Um mostrador de relógio com muita aritmética

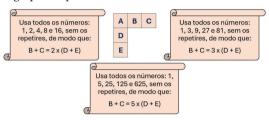
Com os 12 números do mostrador de relógio seguinte consegues fazer 2 grupos, de 6 números cada, cuja soma seja a mesma? A ser possível, quantos casos diferentes consegues obter?

(Respostas até 6 de janeiro, para pjmafonso@gmail.com)

IDENTIFICAR REGULARIDADES CURIOSAS

O problema relativo ao n.º 175 da Revista *Educação e Matemática* era o seguinte:

Resolve cada um dos 3 desafios seguintes e procura encontrar regularidades após essas resoluções. O que consegues destacar como sendo algo que sempre acontece?



Talvez devido à altura do ano em que o problema foi proposto para resolução, ao nosso contacto não chegou qualquer resolução. Contudo creio que a tarefa era muito interessante por estar associada às cinco primeiras potências de expoente positivo, de bases 2, 3 e 5.

Vejamos caso a caso, iniciando nas potências de base 2. Dado que B + C tem de ser o dobro de D + E, significa que excetuando o valor a colocar em A, a soma das restantes quatro potências de base 2 terá de ser um múltiplo de três. Adicionando duas das três partes, fica-se com o dobro da restante. Ora isto somente acontece quando à soma total 31, retiramos o 1, o 4 ou o 16, ficando-se, respetivamente com os totais de 30, 27 e 15. Reparese que 30 = 20 + 10, 27 = 18 + 9 e 15 = 10 + 5. A Tabela A, seguinte, permite constatar que existem várias soluções para o desafio de se usarem estas cinco potências de base 2:

Tabela B. Estudo envolvendo as potências de base 2

1	16	4	1	16	4	1	4	16	1	4	16
8			2			2			8		
2			8			8			2		
		_						_	_		
4	16	2	4	16	2	4	2	16	4	2	16
8			1			1			8		
1			8			8			1		
16	8	2	16	8	2	16	2	8	16	2	8
4			1			1			4		
1			4			4			1		

Analisemos, agora, as potências de base 3. Dado que B+C tem de ser o triplo de D+E, significa que excetuando o valor a colocar em A, a soma das restantes quatro potências de base 3 terá de ser um múltiplo de quatro. Adicionando três das quatro partes, fica-se com o triplo da restante. Ora isto somente acontece quando à soma total 121, retiramos o 1, o 9 ou o 81, ficando-se, respetivamente com os totais de 120, 112 e 40. Repare-se que

120 = 90 + 30, 112 = 84 + 28 e 40 = 30 + 10. A Tabela B, seguinte, permite constatar que voltam a existir várias soluções para o desafio de se usarem estas cinco potências de base 3:

Tabela C. Estudo envolvendo as potências de base 3

1 81 9 27 3	1 81 9 3 27	1 9 81 3 27	1 9 81 27 3
9 81 3 27 1	9 81 3 1 27	9 3 81 1 27	1 3 81 27 1
81 27 3 9 1	81 27 3 1 9	81 3 27 1 9	81 3 27 9 1

Por último, usemos, agora, as potências de base 5. Dado que B + C tem de ser o quíntuplo de D + E, significa que excetuando o valor a colocar em A, a soma das restantes quatro potências de base 5 terá de ser um múltiplo de seis. Adicionando cinco das seis partes, fica-se com o quíntuplo da restante. Ora isto somente acontece quando à soma total 781, retiramos o 1, o 25 ou o 625, ficando-se, respetivamente, com os totais de 780, 756 e 156.

Repare-se que 780 = 650 + 130,756 = 630 + 126 que 156 = 130 + 26. A Tabela C, seguinte, permite constatar que voltam a existir várias soluções para o desafio de se usarem estas cinco potências de base 5:

Tabela D. Estudo envolvendo as potências de base 5

	1	625	25		1	625	25	1	25	625	1	25	625
	125				5			5			125		
	5				125			125			5		
	25	625	5		25	625	5	25	5	625	25	5	625
	125				1			1			125		
	1				125			125			1		
-			_	1			_		_			_	
	625	125	5		625	125	5	625	5	125	625	5	125
	25				1			1			25		
	1				25			25			1		

Analisando-se todas as resoluções, pode inferir-se que este desafio tem solução se se colocar na posição A as potências de expoente par:

Potências de Base 2: 2°, 2° e 2⁴, correspondendo a 1, 4 e 16; Potências de Base 3: 3°, 3° e 3⁴, correspondendo a 1, 9 e 81; Potências de Base 5: 5°, 5° e 5⁴, correspondendo a 1, 25 e 625.

No problema publicado no n.º 176 registaram-se duas gralhas no padrão numérico: onde se lê 4 e 35 deve ler-se 6 e 36, respetivamente. A versão online já se encontra corrigida.