A divisão do paralelogramo

A tarefa foi proposta nas duas turmas de capacitação de formadores do 3.º Ciclo, no âmbito das Aprendizagens Essenciais do Ensino Básico.

A tarefa visa o desenvolvimento de capacidades matemáticas, em articulação com temas matemáticos e capacidades e atitudes gerais transversais. Neste caso, a propósito do estudo de operações com polinómios (8.º ano) pretendia-se promover o raciocínio e as representações múltiplas, e ainda capacidades e atitudes como a comunicação e o pensamento crítico.

Pretende-se que o recurso a um ambiente de geometria dinâmica permita que o aluno realize uma atividade exploratória. Posteriormente, o trabalho do aluno deve ser direcionado para a justificação de conjeturas e para a análise de conclusões formuladas algebricamente.

João Almiro,

Escola Secundária de Tondela

LEONOR SANTOS

Instituto de Educação da Universidade de Lisboa

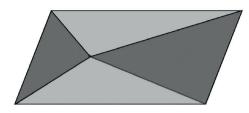
PAULO CORREIA

Agrupamento de Escolas de Alcácer do Sal

Rosa Ferreira

Faculdade de Ciências da Universidade de Porto

Rui Gonçalo Espadeiro

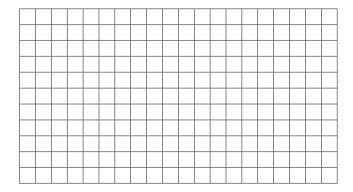

Agrupamento de Escolas André de Gouveia

Educação e Matemática 174 4.º Trimestre 2024

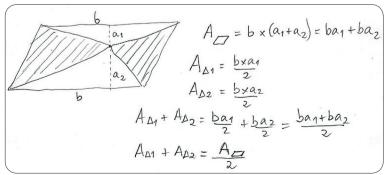
A divisão do paralelogramo

A figura ao lado mostra o projeto da bandeira que, a partir deste ano, identificará as equipas do desporto escolar da escola da Rita.

Como a Rita tem muito jeito para artes visuais, pediram-lhe para desenhar um projeto para essa bandeira, que tem a forma de um paralelogramo. Esse paralelogramo está dividido em quatro triângulos pintados de duas cores: uma cor representa os alunos do Secundário e outra, os alunos do 3.º Ciclo.


Nesta escola, existem mais alunos do Secundário do que do 3.º Ciclo, no Desporto Escolar. Assim, é necessário que a área dos triângulos correspondentes a estes alunos seja maior.

Onde terá de colocar a Rita o vértice comum dos quatro triângulos, de forma a obedecer a esta condição?


- 1. Para te ajudar a encontrar uma solução para o problema, faz a seguinte construção no GeoGebra:
 - 1.1. Desenha um paralelogramo.
 - 1.2. Considera um ponto qualquer P, no interior do paralelogramo e, a partir dele, traça os quatro triângulos que compõem a figura, não te esquecendo de os sombrear com duas cores diferentes, como mostra a figura.
- 1.3. Calcula a área dos triângulos.
- 1.4. Verifica se a posição do ponto P, que consideraste anteriormente, é uma resposta ao nosso problema.
- 1.5. Caso contrário, arrasta o ponto P para tentares encontrar uma solução do problema. O que observas?

2.

- 2.1. No quadriculado ao lado, desenha um paralelogramo de base 10 e altura 6, sendo a unidade o lado da quadrícula.
- 2.2. No interior do paralelogramo, marca um ponto qualquer P.
- 2.3. Divide e pinta o paralelogramo de acordo com a bandeira da escola.
- 2.4. Calcula e compara as áreas das partes sombreadas com cores diferentes. O que observas?

- 3. A Rita também fez vários desenhos e não percebeu o que estava a acontecer com as áreas dos triângulos. Então, pediu à Mariana, que gosta muito de matemática, para a ajudar a encontrar uma solução para a localização de um ponto P no interior do paralelogramo, de modo a respeitar a condição pedida.
 - A Mariana escreveu uma justificação no seu caderno e enviou-lhe a fotografia do que escreveu:
 - 3.1. Escreve uma explicação que traduza em linguagem corrente a justificação que a Mariana enviou à Rita.
 - 3.2. A Mariana encontrou a solução para o problema da Rita? Justifica a tua resposta.

