Tecnologia e(m) educação matemática:

uma proposta com padrões fractais no ensino básico

VALENTINA PIACENTINI ARTUR COELHO

A Matemática é uma das disciplinas na qual os alunos, ao longo dos ciclos de ensino, apresentam mais dificuldades e, consequentemente, os apoios complementares estão entre os mais procurados. A sua compreensão implica integrar vários registos de representação (Duval, 2006). Porém determinadas práticas de ensino dissociam o conhecimento conceptual das situações reais em que ele é aprendido. Esta descontextualização dos conceitos leva, frequentemente, os alunos a desenvolver uma reação hostil face a esta ciência. A matemática encontra-se dramaticamente associada a números, fórmulas, equações e procedimentos que não fazem sentido para muitos dos alunos (Devlin, 1998). Esta perceção negativa está especialmente presente no domínio da álgebra (Borralho, Cabrita, Palhares, & Vale, 2007).

Assim, a questão que se coloca é: "Como desenvolver o pensamento algébrico de forma a conduzir os alunos a acharem a álgebra indispensável e interessante e a fazerem conexões com outras disciplinas e com o mundo real?" A procura e a identificação de padrões são processos de abordagem defendidos por estes e outros autores.

Esta proposta, que surge no âmbito de um trabalho curricular de um Programa Doutoral em Educação (Coelho, Mbandje, Piacentini, & Ribeiro, n.d.) — enquadrada numa perspetiva socioconstrutivista, que assume a aprendizagem e o desenvolvimento intelectual como atividades sociais colaborativas — consta de um conjunto de tarefas relacionadas com a construção de padrões fractais, suportadas por ferramentas tecnológicas como Ambientes Dinâmicos de Matemática Dinâmica [ADMD], num contexto que envolve a Geometria, a Arte e o próprio entorno natural.

TECNOLOGIA E(M) EDUCAÇÃO MATEMÁTICA

Os contextos educativos contemporâneos exigem habilidades e competências quer dos professores, quer dos alunos, que transformam o ensino-aprendizagem ao permitir alargar este processo para além dos espaços formais. Carecem também de estratégias que envolvam o uso de ferramentas tecnológicas, que viabilizem uma exploração continuada que se traduza numa aprendizagem significativa, ativa e reflexiva. As Tecnologias da Comunicação, ao disponibilizarem instrumentos variados, podem ser, também, uma resposta aos diversos estilos intelectuais dos alunos. Pretendem-se interações que alimentem dinâmicas colaborativas que façam do aluno um elemento integrante, ativo e participativo na sua aprendizagem, capaz de produzir e partilhar os seus conteúdos, desenvolvendo o seu pensamento crítico e a sua criatividade. Lévy (2010) refere-se também à promoção da inteligência coletiva através do uso da tecnologia de rede. Esta promove e facilita a interação e a conectividade dos intervenientes, favorecendo a aprendizagem colaborativa e social. A comunidade assume um papel fulcral, na construção do conhecimento com e para os outros e no desenvolvimento de atividades sociais colaborativas (Vygotsky, 2001).

Siemens (2005) refere que as teorias da aprendizagem são omissas quando esta decorre no exterior dos indivíduos e/ou quando a informação é armazenada e manipulada através da tecnologia. Um dos aspetos mais importantes destacados por este autor é a possibilidade de agora, em ambientes altamente tecnológicos, transferir parcialmente ou apoiar (offload) processos mentais através da tecnologia, promovendo assim no indivíduo a capacidade/possibilidade de pensar e raciocinar num nível mais elevado e de navegar em espaços de conhecimento mais complexos.

Num tempo em que as circunstâncias se alteram constantemente e de forma muito rápida, em que tudo se relaciona com tudo, onde o volume de informação é muito superior ao que podemos aprender, para a aprendizagem são extremamente relevantes aspetos como a adaptação, o reconhecimento de alterações nos padrões e consequente reajustamento, o formar conexões entre comunidades especializadas e a criação de padrões de informação úteis a partir de uma variedade de fontes de informação (Siemens,

2005). O que aprendemos tem que ser atualizado, relevante e contextualizado. A atualidade do conhecimento é uma função da rede, que processa, filtra, avalia e valida nova informação (Downes, 2007). Ignorar a natureza em rede da sociedade atual, da vida e da aprendizagem, é alhear-se das mudanças fundamentais que ocorrem no nosso mundo.

UMA PROPOSTA COM FRACTAIS

Um "padrão" é uma disposição ou arranjo de números, formas, cores ou sons que, a nível matemático, está associado a regularidade(s), sequência, motivo, regra e ordem (Borralho et al., 2007). Como "sublimado" por Devlin (2003) a Matemática é a Ciência dos Padrões. Também nas áreas da Poesia e da Música, das Educações Física e Visual, os padrões estão presentes, fazem parte do quotidiano das pessoas, da arte e da natureza. Os padrões fractais — caraterizados pelo facto das partes que os compõem se mostrarem similares à forma como um todo e de se repetirem infinitas vezes, numa área finita — estimulam "[...] a contemplação da estética nas regularidades presentes na aparente irregularidade" (Faria & Maltempi, 2012, p. 42).

Grande parte dos elementos ou acontecimentos naturais não podem ser entendidos no âmbito da geometria euclidiana. Esta proposta, dirigida a alunos do 3.º Ciclo do Ensino Básico (12-15 anos), sugere uma abordagem da geometria fractal num contexto mais alargado. Tem como objetivos: 1) desenvolver o pensamento algébrico e geométrico nos alunos; 2) contextualizar a matemática no mundo real e; 3) desenvolver habilidades tecnológicas. Esta proposta desenvolve-se através da: i) procura de padrões na vida real; ii) construção, manipulação e análise de padrões fractais geométricos num ADMD e significados algébricos relacionados; iii) criação de melodias recursivas e; iv) articulação dos padrões visuais e sonoros através da construção de animações frame a frame.

A construção de um fractal pode revelar-se uma tarefa de elevada complexidade, que exige precisão e eficácia. Este processo pode ser suportado pela utilização de um ADMD como o GeoGebra, que "[...] pode facilitar a aprendizagem [...] a descoberta de um método para reproduzir e expressar um conceito matemático [...] pois permite criar, mover, distorcer, analisar e testar propriedades de figuras num processo de investigação" (Faria & Maltempi, 2012, p. 42). Para a criação e manipulação das melodias recursivas propõe-se a utilização da ferramenta online gratuita Soundation. Para a montagem e edição do vídeo a partir destes arquivos e dos frames (dos fractais) criados no software gratuito Paint.NET, será utilizado o VideoPad.

AS TAREFAS

As tarefas selecionadas pelo professor continuam a ser a base para a aprendizagem dos alunos (Vale, Pimentel, Cabrita, & Barbosa, 2012). Cabe-lhe, portanto, criar abordagens que estimulem a criatividade, que exijam bastante mais do que o procedimento memorizado rotineiro, que é ainda observável em muitas salas de aula (Redecker, Ala-Mutka, Baciagalupo, Ferrari, & Punie, 2009). Propõem-se, assim um conjunto de tarefas, cuja implementação prevê quatro fases distintas: 1) introdução; 2) desenvolvimento; 3) discussão e; 4) sistematização das aprendizagens (Stein, Engle, Smith, & Hughes, 2008). Previamente à realização das tarefas propõe-se aos alunos uma pesquisa colaborativa, para além da sala de aula, recorrendo a plataformas da Social Web como o Facebook ou o Google+. Pretende-se que os alunos explorem diversos tipos de padrões presentes na natureza: sonoros, geométricos, de repetição, de crescimento, a série de Fibonacci e também padrões fractais. Focando-nos nestes últimos, discutem-se características e propriedades presentes como a autossimilaridade (aparecimento de um determinado padrão independentemente da escala a que se observa), ou a complexidade infinita (observável através da visualização da iteração dos níveis do fractal) (Faria & Maltempi, 2012).

TAREFA I - CONSTRUÇÃO DA CURVA DE KOCH (ADAPTADO DE MACEDO & FRANCO, N.D.)

Nesta tarefa, propõe-se a descoberta e exploração da Curva de Koch (figura 1) no GeoGebra. Os alunos realizam os printscreen das várias iterações do padrão (a guardar automaticamente através do Dropbox ou Onedrive) para construir a galeria de imagens que são editadas no Paint.NET. Inicia-se a exploração desta tarefa com a visualização de imagens deste fractal, relembrando alguns aspetos da história da Matemática abordados em atividades prévias de pesquisa. Convidam-se os alunos a identificarem as suas características e o padrão geométrico utilizado na sua construção.

Mobilizam-se conceitos sobre classificação de triângulos,

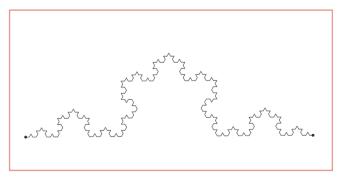


Figura 1. Curva de Koch

#141

Construção passo a passo

- 1. Construir um segmento definido por dois pontos a=AB entre A e B;
- 2. Construir outro segmento definido por dois pontos b=CD entre C e D:
- 3. Construir uma semirreta com origem no ponto A e a passar por E (ver figura 1);

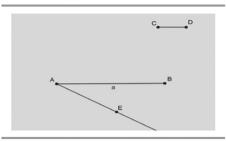


Fig. 1 - Construção da Curva de Koch

- 4. Marcar na semirreta AE um ponto utilizando o comando circunferência e raio, onde o valor deste seja b e o seu centro no ponto A. Repetir o processo mais duas vezes utilizando o ponto obtido no processo anterior como centro;
- 5. Intersetar todos os pontos entre as circunferências e a semirreta (Pontos F, H e J);
- 6. Construir um segmento de reta entre os pontos J e B:
- 7. Construir duas retas paralelas a [JB] e a passar pelos pontos F e H;
- 8. Intersetar as retas com o segmento de reta [AB] (definem-se os pontos K e L);

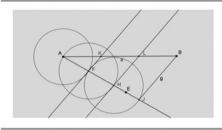


Fig. 2 - Divisão do segmento de reta em 3 segmentos congruentes

- 9. Ocultar a semirreta AE, as circunferências, as retas paralelas e o segmento de reta [JB];
- 10. Construir uma circunferência com centro no ponto K até A;
- 11. Construir uma circunferência com centro no ponto L até B:

Figura 2. Protocolo de construção da Curva de Koch

noção de segmento, de reta, semirreta, paralelismo, circunferência e raio e interseção de conjuntos. Pretendese também recorrer a noções de potenciação e dos números racionais para representar a medida de comprimento dos segmentos em cada iteração, estabelecendo-se assim, concomitantemente, a relação com a simbologia algébrica. Este padrão constrói-se a partir de segmento de reta. O seu processo iterativo consiste em dividir este segmento em três partes congruentes e ocultar o segmento central, substituindo-o por outros dois, de maneira a formar um triângulo equilátero com o segmento oculto. Obtêm-se quatro segmentos congruentes. A partir daqui realiza-se o mesmo processo para cada segmento para alcançar o nível seguinte do fractal (figura 2).

TAREFA II - CONSTRUÇÃO DO TRIÂNGULO DE SIERPINSKY

Agora, propõe-se a descoberta, a exploração e a construção do Triângulo de Sierpinsky. Pretende-se que os alunos deduzam a sua regra de construção e consolidem, simultaneamente, conceitos como perímetro e área, classifiquem triângulos,

12. Intersetar as circunferências (definem-se os pontos M e N):

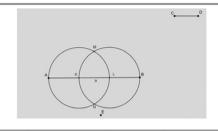


Fig. 3 - Construção do triângulo no segmento [AB]

- 13. Construir os segmentos [KM] e [ML]:
- 14. Ocultar o segmento a, as circunferências e o ponto N;

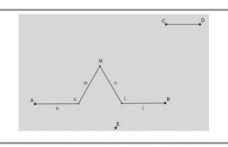


Fig. 4 – Iteração 1 da Curva de Koch

- 15. Para repetir este processo em todos os segmentos (iteração) é necessário criar uma ferramenta. Para isso, selecionar no menu de ferramentas, Criar nova ferramenta, secionar os objetos iniciais (pontos K, M e L; segmentos j, m, n, I), nomear a ferramenta e concluir. Um novo ícone é adicionado à barra de ferramentas
- 16. Clicar no novo ícone, em seguida no segmento a fracionar, depois nos pontos C e D e finalmente no ponto E. Repetir até chegar ao nível desejado.

Extensões da tarefa:

- -Relacionar o número de iterações com o número de segmentos, o seu comprimento e extensão total da curva (registar numa tabela);
- -Estabelecer formalmente a progressão geométrica associada a partir da observação da tabela.

e recorram à álgebra para estabelecer leis de formação, efetuando generalizações.

Apresenta-se, então, uma imagem do triângulo (figura 3) e solicitam-se aos alunos conjeturas sobre o possível ponto de partida e sobre o processo de construção que lhe deu origem, devendo os alunos ensaiar, no GeoGebra, possíveis resoluções para o problema apresentado. Uma resolução provável passaria pela construção de um triângulo equilátero onde o seu processo iterativo consiste em inscrever, nos pontos médios de cada triângulo, um novo a quem é alterada a cor. Este processo define sempre mais três triângulos inscritos no triângulo de origem. Realiza-se o mesmo processo para cada triângulo cuja cor não tenha sido alterada (figura 4). Poder-se-ia ainda: i) discutir sobre as características da figura inicial; ii) relacionar o número de iterações com o número de triângulos, a medida do comprimento do lado, o perímetro de cada triângulo e o perímetro total (a registar numa tabela); iii) deduzir uma regra para o número de triângulos desconsiderados em cada iteração; iv) estabelecer uma regra de formação dos triângulos considerados em cada iteração; v) estabelecer formalmente a progressão geométrica associada a

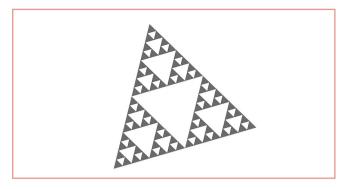


Figura 3. Triângulo de Sierpinsky

Construção passo a passo

- 1. Construir um polígono regular dados os pontos A e B e o número de lados (3);
- 2. Marcar os pontos médios de cada lado do triângulo;

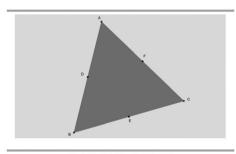


Fig. 1 – Nível 0 do Triângulo de Sierpinski

- 3. Construir um novo polígono a partir dos pontos obtidos no processo anterior;
- 4. Desconsiderar, alterando-lhe a cor, o triângulo central;

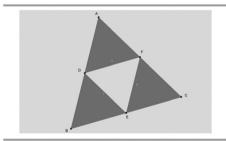


Fig. 2 – Primeira iteração do triângulo de Sierpinski

- 5. Para repetir este processo em todos os triângulos (iteração) é necessário criar uma ferramenta. Para isso, selecionar no menu de ferramentas, Criar nova ferramenta; secionar os objetos iniciais (segmentos [AB], [AC] e [CB], nomear a ferramenta e concluir. Um novo ícone é adicionado à barra de ferramentas.
- Clicar no novo ícone, em seguida no segmento a fracionar, depois nos pontos desejados. Repetir até atingir o nível desejado. Ocultar os rótulos e os pontos.

Figura 4. Protocolo de construção do Triângulo de Sierpinsky

partir da observação da tabela e; vi) extrapolar as conclusões para as áreas.

TAREFA III - CONSTRUÇÃO DE UMA ÁRVORE PITAGÓRICA (ADAPTADO DE FARIA & MALTEMPI, 2012)

Na construção da Árvore Pitagórica (figura 5), pretendese, novamente, que os alunos identifiquem a regra de construção do fractal e estabeleçam algebricamente as suas leis de formação e, simultaneamente, consolidem outros conceitos geométricos, de forma análoga ao realizado nas tarefas anteriores.

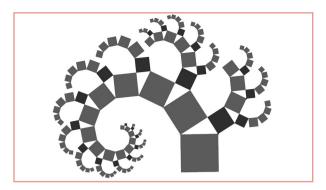


Figura 5. Árvore Pitagórica

Apresentam-se então imagens deste fractal relacionando-o, por exemplo, com a disposição dos ramos dos brócolos. Convidam-se os alunos a identificar as suas características, propriedades e o padrão geométrico utilizado para a sua construção. Este padrão constrói-se a partir de um quadrado, em que se define, a partir de um dos seus lados, um triângulo retângulo, cujos lados são o lado do próximo quadrado. O seu processo iterativo consiste em gerar um novo quadrado, tendo como base os vértices do triângulo do nível anterior. Realiza-se o mesmo processo para cada triângulo (figura 6).

Construção passo a passo

- 1. Construir um segmento de reta [AB]
- 2. Construir uma semicircunferência entre os pontos A e B;
- 3. Marcar o ponto C na semicircunferência;
- Construir um polígono (triângulo) [ABC] (este triângulo é retângulo em C porque está inscrito na semicircunferência);

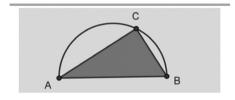


Fig. 1 – Triângulo inscrito numa semicircunferência

- Construir um polígono regular (quadrado) dados os pontos A e C e o número de lados (4) e ocultar a semicircunferência;
- 6. Construir um polígono regular dados os pontos B e C e o número de lados (4);
- 7. Intersetar a semirreta com a semicircunferência (define-se o ponto F):

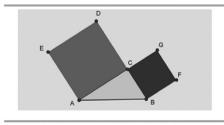


Fig. 2 – Quadrados gerados a partir dos catetos do triângulo

- Selecionar no menu de ferramentas, Criar nova ferramenta, selecionar os objetos iniciais (pontos A, B, C, D, e E, F e G); o triângulo [ABC], e os dois quadrados; nomear a ferramenta e concluir. Um novo ícone é adicionado à barra de ferramentas.
- 9. Construir um polígono dados aos pontos A e B e o número de lados (4);
- 10. Ocultar rótulos, a semicircunferência e definir outra cor para o quadrado com menor área;
- Clicar no novo ícone, em seguida nos pontos desejados para gerar um novo elemento. Repetir até chegar ao nível desejado.

Figura 6. Protocolo de construção da Árvore Pitagórica

29

Nesta exploração realiza-se, simultaneamente, trabalho com áreas, perímetros, razões e, de uma forma geral, com progressões geométricas. Outras explorações podem enriquecer a abordagem, nomeadamente: i) discutir sobre as características da figura inicial; ii) relacionar o número de iterações com as áreas dos vários polígonos (a registar numa tabela); iii) identificar relações entre o somatório da área dos quadrados no nível 0 e o somatório da área dos quadrados no nível 1; iv) repetir o processo para o fractal de nível 2; v) identificar um padrão analisando as respostas anteriores; vi) generalizar para o cálculo da área do fractal em qualquer nível e; vii) discutir o Teorema de Pitágoras.

TAREFA IV - CONSTRUÇÃO DE UM PADRÃO RECURSIVO SONORO

Depois de finalizados os fractais geométricos, propõe-se aos alunos a construção de um padrão recursivo sonoro a partir de regras muito simples e utilizando uma ferramenta baseada na Web, o Soundation.

Assim, escolhe-se uma nota musical de partida, por exemplo o Mi; a sua duração, por exemplo 4 tempos e; a duração de uma nota diferente, por exemplo 3 tempos. Denomine-se esta configuração como 4-Mi-3. Em seguida, configura-se um ciclo repetitivo de 4 por 4 tempos e faz-se soar a nota de partida (Mi). Aplique-se então esta simples regra: assim que a última nota deixe de soar, faça-se soar outra com a mesma duração, mas um tom acima. Se a nova nota soar simultaneamente com alguma outra nota prévia, altere-se a duração desta de 4 para 3 tempos ou vice-versa. A configuração 10-Sol-3,5 produz uma melodia especialmente agradável.

TAREFA V - CONSTRUÇÃO DE UM VÍDEO FRAME A FRAME

Por último, aos alunos é-lhes proposta a construção de um vídeo no VideoPad (figura 7). Para isso utilizam os frames

Section Course | Section |

Figura 7. Montagem de um vídeo, frame a frame, no VideoPad

capturados aquando da resolução das tarefas com os fractais geométricos, integrando a composição sonora realizada na tarefa anterior.

CONSIDERAÇÕES FINAIS

Este trabalho representa uma abordagem à "matemática em ambiente tecnológico" mais do que à "tecnologia em ambiente matemático". Centra-se na utilização de recursos tecnológicos multimédia no desenvolvimento do pensamento algébrico e geométrico, de forma contextualizada no mundo real, por meio da construção de padrões geométricos e sonoros.

O professor, enquanto mediador, motivador e potenciador do processo de aprendizagem, quando recorre à utilização de ferramentas tecnológicas pensadas para serem usadas em cenários educacionais específicos, deve levar em consideração a faixa etária dos seus alunos, o seu nível de conhecimento tecnológico, o equilíbrio entre trabalhos individuais e coletivos e a exploração das funcionalidades das ferramentas selecionadas, conforme os objetivos estabelecidos na unidade curricular, já que é destes que depende a eficácia da tecnologia utilizada.

O processo de aprendizagem, quando contextualizado com acontecimentos da vida real, transversais a vários domínios, envolvendo a natureza, a arte e a cultura, independentemente da unidade curricular a ser trabalhada e dos recursos tecnológicos utilizados, pode promover a criatividade e o interesse dos alunos em descobrir novas possibilidades de explorar os conceitos intrínsecos, reduzindo a hostilidade à disciplina. Pretende-se, de facto, uma aprendizagem significativa da matemática em geral, e da álgebra em particular. Através de possibilidades e caminhos alternativos que nos são oferecidos por algumas ferramentas tecnológicas,

é possível envolver os alunos numa investigação e inquirição verdadeiras, que contornem as respostas prontas e mecanizadas.

O uso equilibrado de calculadoras e de outras ferramentas é essencial para uma educação matemática de qualidade, quando se desenvolve a compreensão conceptual, a habilidade de cálculo e a de resolução de problemas (NCTM, 2015). A manipulação destas ferramentas pode motivar os alunos para a matemática, na medida em que é favorecida a integração dos canais cognitivos, metacognitivos e afetivos

(Pierce, Stacey, & Barkatsas, 2007). Para a realização destas tarefas selecionámos, assim, um conjunto de ferramentas de natureza open source ou com períodos de utilização gratuitos, quer no âmbito circunscrito da geometria — o GeoGebra — quer em domínios não diretamente ligados à educação, mas significativos em contextos transversais — o Paint.NET, o Soundation e o VideoPad.

Parece claro que a escola e os currículos de matemática devem proporcionar aos alunos e professores acesso a uma formação em ambiente tecnológico, com computadores e software de matemática em ambiente de rede. Em plena revolução digital no século XXI, todavia, a opção por metodologias não tradicionais reduz-se ao domínio pessoal do professor ou ao uso de recursos tecnológicos em abordagens que se mantêm essencialmente transmissivas (Redecker et al., 2009), com impactos limitados na inovação das práticas de ensino e de aprendizagem.

Consideramos que é necessário vivenciar, no contexto do ensino e da aprendizagem formal e informal, o Construtivismo social preconizado por Vygotsky, ampliado/mediado na perspetiva Conectivista de Siemens. Ou seja, um ensino e uma aprendizagem alicerçados também nas interações sociais, humanas e tecnológicas, fazendo uso de recursos didáticos diferenciados, com o objetivo de conduzir à formação de cidadãos criativos e críticos que participem do seu processo de aprendizagem, que partilhem e interajam para construírem novos conhecimentos.

Bibliografia

- Borralho, A., Cabrita, I., Palhares, P., & Vale, I. (2007). Os Padrões no Ensino e Aprendizagem da Álgebra. In I. Vale, T. Pimentel, A. Barbosa, L. Fonseca, L. Santos, & A. P. Canavarro (Eds.), Números e Álgebra (pp. 193–211). Lisboa: SEM-SPCE. Disponível em http://hdl.handle.net/10174/1416
- Coelho, A., Mbandje, D., Piacentini, V., & Ribeiro, R. (n.d.). Desenvolvimento do Pensamento Algébrico através da Exploração de Padrões em Ambiente Tecnológico. Universidade de Aveiro.
- Devlin, K. (1998). Life by Numbers. New York: John Wiley & Sons, Inc.
- Devlin, K. (2003). Mathematics: the Science of Patterns. The Search for Order in Life, Mind, and the Universe. New York: Henry Holt and Company.
- Downes, S. (2007). What Connectivism Is. Disponível em http://halfanhour.blogspot.com/2007/02/what-connectivism-is.html
- Duval, R. (2006). A Cognitive Analysis of Problems of Comprehension in a Learning of Mathematics. Educational Studies in Mathematics, 61(1), 103–131. http://doi.org/10.1007/s10649-006-0400-z
- Faria, R., & Maltempi, M. (2012). Padrões Fractais: conectando Matemática e Arte. EccoS Revista Científica, 33–53. http://doi.org/10.5585/EccoS.n27.3484

- Lévy, P. (2010). Cibercultura (3a Ed). São Paulo: Editora 34.
- Macedo, J., & Franco, V. (n.d.). Fractais uma abordagem em sala de aula com o auxílio de softwares geométricos. Disponível em http://www.diaadiaeducacao.pr.gov.br/portals/pde/arquivos/2204-6.pdf
- NCTM. (2015). Strategic Use of Technology in Teaching and Learning Mathematics. Acedido em http://www.nctm.org/uploadedFiles/ Standards_and_Positions/Position_Statements/Strategic Use of Technology July 2015.pdf
- Pierce, R., Stacey, K., & Barkatsas, A. (2007). A scale for monitoring students' attitudes to learning mathematics with technology. Computers and Education, 48(2), 285–300. http://doi.org/10.1016/j.compedu.2005.01.006
- Redecker, C., Ala-Mutka, K., Baciagalupo, M., Ferrari, A., & Punie, Y. (2009). Learning 2.0: The Impact of Web 2.0 Innovations on Education and Training in Europe. Disponível em http://ftp.jrc.es/EURdoc/JRC55629.pdf
- Siemens, G. (2005). Connectivism: A Learning Theory for the Digital Age. International Journal of Instructional Technology and Distance Learning (ITDL), January, 1–8. http://doi.org/10.1.1.87.3793
- Stein, M. K., Engle, R. a., Smith, M. S., & Hughes, E. K. (2008).

 Orchestrating Productive Mathematical Discussions: Five Practices for Helping Teachers Move Beyond Show and Tell. Mathematical Thinking and Learning, 10(4), 313–340. http://doi.org/10.1080/10986060802229675
- Vale, I., Pimentel, T., Cabrita, I., & Barbosa, A. (2012). Pattern Problem Solving Tasks As a Mean To Foster Creativity in Mathematics. Proceedings of the 36th Conference of the International Group for the Psychology of Mathematics Education, 4(1), 171–178.
- Vygotsky, L. S. (2001). Pensamento e Linguagem (Ed. Elect). Ridendo Castigat Mores. Disponível em http://www.ebooksbrasil.org/eLibris/vigo.html.

VALENTINA PIACENTINI

Centro de Investigação "Didática e Tecnologia na Formação de Formadores", Dep. de Educação e Psicologia, Universidade de Aveiro

ARTUR COELHO

AGRUPAMENTO DE ESCOLAS DE ALMEIDA

#141

31